

Table of Contents

What is 8ASIC..3

Conventions..3

Hotkeys...3

8ASIC vs. 8-bit BASICs...4

Saving and Loading...5

Speed and Interrupts...6

Variables, Strings and Arrays..7

Color...8

Vector Graphics..9

Scrolling..10

Sprites...11

Sound..12

Speech..13

Keyboard and Mouse...14

BASIC Keywords..15

Built-in Functions...30

Operators..35

System Variables...36

Special Characters..45

Included Demos..46

Open Source Licenses...49

2

What is 8ASIC

8ASIC is a BASIC language interpreter, loosely based on BASIC interpreters of
the 8-bit era, like those found on the ATARI 800, the Commodore C64, or the Sin-
clair ZX Spectrum. It was designed to run old-school BASIC programs, without
being an emulator of any particular machine. It pays homage to the ATARI 800,
because that was my first computer, but it's by no means limited to that particular
BASIC dialect. On the contrary, 8ASIC implements a super-set of keywords and
features, originating from multiple machines of the 8-bit era.

Conventions

This guide uses the following conventions:

 aexpr means an arithmetic expression

 bexpr means a Boolean expression

 sexpr means a string expression

 expr means any kind of expression

 [square brackets] denote optional arguments or keywords

 8ASIC font indicates commands and code fragments

 BASIC keywords are written in UPPERCASE, even though they are case-
insensitive

Hotkeys
Key Function Key Function

F1 Open this guide
Cmd/Ctrl+B

Ctrl+Pause
Interrupt execution

F5 Warm reset
Cmd/Ctrl+O

Insert
Toggle overwrite mode

Shift+F5 Cold reset
Cmd/Ctrl+P

Pause
Pause execution

F11
Alt+Enter

Toggle fullscreen

3

8ASIC vs. 8-bit BASICs

While 8ASIC is based on 8-bit era BASIC interpreters, there are a few significant
differences you need to be aware of, if you're used to programming on vintage
machines.

 Lines with lower line numbers are not executed any faster than those with
higher numbers.

 Functionality which would traditionally be accessed via PEEK and
POKE has been exposed via system variables.

 There's no ATARI-style command abbreviation, although some common
abbreviated forms of commands, like ? and PR for PRINT, . for REM,
and # for LABEL are supported.

 No I/O commands for reading from/writing to floppy or cassette. Instead,
8ASIC uses your computer's normal file system.

 Strings can be dimensioned, but don't have to be. In either case, they are
fully dynamic, and can grow to any size. Arrays (both numerical and
string) have to be dimensioned.

 The parsing of DATA entries was incompatible between different vin-
tage machines. I've chosen the C64 format, with its quoted string support,
and trimming of leading and trailing spaces.

 CONT will continue execution from the next statement, not the next line.

 The screen editor is in insert mode by default, like modern text editors.
To switch to overwrite mode, press Insert or Cmd/Ctrl+O.

 Color and graphics capabilities of vintage machines varied quite a bit.
8ASIC uses a modern color representation, it features high-resolution
vector graphics, and a powerful sprite system.

 Likewise, 8-bit computers had different sound chips (sometimes even
none at all). 8ASIC has a 16-voice software synthesizer, and can utilize
your OS's text-to-speech functionality.

 Although 8ASIC's font contains many special characters from the ATASCII
and PETSCII character tables, as well as other characters that are unique
to 8ASIC, it's currently not possible to replace them with custom charac-
ters.

4

Saving and Loading

Because 8ASIC is not an emulator, it uses your computer's regular file system to
save and load programs.

LOAD "Hello" will try to load the file “Hello.bas” from the 8ASIC sub-fold-
er in your OS's default documents folder. You can also specify the entire path,
and/or file extension as well.

If you don't recall the name or location of the program you want to load, simply
enter LOAD without a file name. 8ASIC will open an OS file dialog, allowing you
to find the desired file interactively.

The SAVE command works pretty much the same way, except in the opposite
direction. You can also merge a previously saved program with the currently
loaded one, using the ENTER command. Just look out for potential line number
conflicts, because any newly-loaded lines will replace existing ones with identi-
cal line numbers.

Finally, there's one more command, which makes it more convenient to load the
demo programs included with 8ASIC. It's called DEMO, and it works more or less
the same as the LOAD command, except it loads programs from 8BASIC's inter-
nal demo folder by default.

Besides BASIC programs, 8ASIC can also load JPEG and PNG files to be used as
sprites using the SPRITEMAP command.

Also, the output of 8ASIC's software synthesizer can be saved to a WAV file using
the RECORD command.

File I/O from within BASIC programs is currently not available, but might be
added in a future release.

5

Speed and Interrupts

8ASIC has two execution modes: fast and slow, while the speed of the latter is ad-
justable. Fast execution mode is enabled by issuing the FAST command, and in
this mode, 8ASIC will execute code as fast as it can.

Slow mode is in turn activated by the SLOW command. Without any arguments,
SLOW sets the execution speed to the default rate of about 200 lines per second.
This is also the speed to which the virtual machine is set initially. It enables the
common BASIC practice of introducing delays into the program by running an
empty FOR loop for a number of iterations. To set a specific speed in lines per
second, simply pass it as an argument to the command. The maximum speed in
SLOW mode is 1000 lines per second, since the granularity of the delay is 1 mil-
lisecond.

If your program is writing text or drawing graphics on the screen, its speed might
also be limited by the automatic refresh after each screen-altering command. The
REFRESH command can be used to suspend automatic screen refresh, and to
achieve the highest possible performance.

Program execution can be paused at any time by pressing the Pause key, or
Cmd/Ctrl+P, and stopped by pressing the Break key, or Cmd/Ctrl+B. If execution
was stopped in this way, it can be resumed using the CONT command. Another
way to stop program execution is to “warm reset” the virtual machine by press-
ing F5. This also resets most system variables to their default values, stops all
sound coming from the software synthesizer, and also stops any sound recording
in progress. To perform a “cold reset”, which also erases the program and all
variables, press Shift+F5.

Program execution can also be interrupted in a timed manner using the AFTER
and EVERY commands. The former creates a one-shot interrupt, while the latter
establishes a periodic one.

When an interrupt is triggered, 8ASIC executes a jump to subroutine (GOSUB)
to the specified line. Normal execution can then be resumed using the regular
RETURN command. Note that if the interrupt function takes too much CPU time,
it's possible that the next interrupt will trigger immediately after the RETURN
command, and there won't be any time for normal program execution.

Interrupts can be suppressed using the INTERRUPTS command, and their
status can be queried by reading the @INTERRUPTS system variable.

6

Variables, Strings and Arrays

Variable names have to start with a letter, and they can contain any number of let-
ters, numbers, and underscores. They are case-sensitive, unlike keywords. String
variable names have to end with a dollar sign ($).

Like with most BASICs, all numerical variables are capable of storing double-
precision floating-point numbers. 8ASIC's variables can also store 64-bit signed
integer numbers. Strings can be of any length, and they contain UTF32 charac-
ters. Of course, 8ASIC's custom font does not have glyphs for all possible UNI-
CODE characters, but most European languages are covered, as are the ATASCII
and PETSCII code tables (to the extent where those characters exist within the
UNICODE standard).

In subroutines, (entered via GOSUB) you can declare local variables using the
LOCAL keyword. These will take precedence over any existing global or local
variables with the same name, and will cease to exist after the next RETURN.
They can be especially useful for recursive algorithms. FOR loop counters are
always local.

Global variables can be listed using the GLOBALS command, and if the pro-
gram is interrupted in a subroutine, you can list local variables as well, using the
LOCALS command.

Arrays can have any number of dimensions, and any size, (within reason) provid-
ed they are correctly dimensioned first (see DIM). String arrays, even multi-di-
mensional ones, are supported as well. Non-array strings can, but don't have to
be dimensioned. When dimensioning string arrays, don't forget to add one more
dimension (actual value doesn't matter). This is for compatibility reasons.

Both ATARI/Commodore style and Sinclair style sub-strings are supported;
A$(5,7) and A$(5 TO 7) will both work. Sub-strings can also be used
on both sides of the equals sign (as L-values and R-values). To specify a sub-
-string of a string array item, simply do so within the same set of brackets.
R$(5,3 TO 6) will return the 3rd to 6th characters of the 5th item of the
string array R$.

Unlike most 8-bit BASICs, 8ASIC features string concatenation using the + opera-
tor.

Some basics had no possibility to enter a double quotation mark (") into a string
literal. 8ASIC supports the two double quotation marks ("") escape sequence.

7

Color

8ASIC uses a 32-bit color representation, with 8 bits reserved for opacity, and 8
bits for each of the red, green, and blue color components. Opacity, or alpha, is
stored in the highest byte.

Vintage BASICs often didn't understand hexadecimal numbers, but 8ASIC does,
and it's easy to express colors that way. A half-transparent, bright green color for
example, would be written as $7F00FF00. Using bitwise operators, and some
careful bit-shifting, one could split this number into the individual color compo-
nents, and then put it back together again. However, there's another, more conve-
nient way.

The built-in RGB() and RGBA() functions take the individual components,
and combine them into a single number, sparing you the effort of doing so with
bit shifts and bitwise-ORs. In this example, RGB stands for red, green, and blue,
and the function always creates opaque colors. RGBA means red, green, blue, and
alpha, where alpha is opacity.

Splitting colors into their components is also covered, in the form of built-in
RED(), GREEN(), BLUE() and ALPHA() functions.

Color-related commands varied quite a bit from one vintage machine to the next.
8ASIC has a PEN command, which sets the foreground color of text and graphics
alike, and a BRUSH command, for text background and filled shapes. The over-
all background color of the screen is set using the PAPER command.

If PEN and BRUSH are used in-line within a PRINT statement, they set the
pen or brush color for the following characters, until the end of the statement.

8ASIC also has a built-in palette of named colors, which can be accessed using
the COLOR() and COLOR$() functions, and the @COLORS system vari-
able.

@COLORS holds the total number of colors in the palette.

COLOR() can be used with a numerical argument, in which case it's interpret-
ed as a one-based index into the alphabetically-sorted palette. If the argument is
negative, it's instead interpreted as an index into the palette sorted by hue and
lightness. If a string argument is provided, it's matched against all the color
names, and if a match is found, the function returns that color. In case of no match,
the function returns 0.

Finally, COLOR$() returns the name of the color in the argument, if it exists in
the palette.

String literals or variables holding color names can also be directly used as ar-
guments for the BRUSH, PEN and PAPER commands.

8

Vector Graphics

Unlike emulators, 8ASIC doesn't attempt to re-create the quirks of graphics chips,
and low-resolution CRT displays of vintage machines. Instead, it implements an
idealized version of BASIC graphics commands, utilizing the full resolution of to-
day's screens.

The range and origin of graphics coordinates are adjustable, and default to 8
times text resolution, and bottom left corner of the screen respectively. They are
controlled by the GRAPHICS command, and the @GRAPHX and @GRAPHY
system variables.

GRAPHICS has two arguments (for X and Y), and it sets the range of the graph-
ics coordinates relative to the text resolution. For example, GRAPHICS 8,8
would set the default range of 8 times text resolution. If only one argument is pro-
vided, the same value will be used for both X and Y coordinates. Note that the
multiplier(s) don't have to be integers.

The @GRAPHX and @GRAPHY system variables can be used to query the cur-
rent absolute range of graphics coordinates, but it can also be used to set it. In
that case, the text-to-graphics multiplier will be calculated from the absolute val-
ue(s). In both cases, if the text resolution changes for any reason, so will the
range of graphics coordinates.

To move the origin to the top of the screen, or even to the right side, simply
negate one or both of the arguments passed to the GRAPHICS command. Sim-
ilarly, if setting the range via the @GRAPHX/Y system variables, negate one or
both values to move the origin to the top and/or right.

Besides the standard points and lines, 8ASIC can also draw boxes, (BOX com-
mand) circles and ellipses, (CIRCLE command) and arbitrary polygons
(VERTEX command). These shapes are always outlined using the current pen,
and filled using the current brush.

Turtle graphics is also available, via the PENDOWN/UP, BRUSHDOW/UP,
LEFT, RIGHT, FORWARD, BACKWARD, and HEADING commands, and
the @TURTLE, @HEADING, @PENDOWN and @BRUSHDOWN system vari-
ables.

Graphics can be drawn in front of, or behind text. This is controlled by the
FOREGROUND and BACKGROUND commands. Each of the three screen lay-
ers (background, text, and foreground) can be independently cleared, without
disturbing the contents of the other two layers. This is done by passing an argu-
ment to the CLS command, with the value of 1 for the background, 2 for text or 4
for the foreground. These values can also be added together, to clear multiple
layers at once. Note that re-ordering the layers using the @TEXTLAYER sys-
tem variable doesn't change the meaning of these values.

9

Scrolling

The most basic way to achieve scrolling in 8ASIC is to simply print more text than
fits on the screen, which will cause it to scroll up automatically. This kind of
“coarse” text scrolling, by whole lines or columns, can also be performed at any
time, and in any direction, using the SCROLL command.

The @NUDGE system array can be used to offset each of the three screen layers
(background, text, and foreground) by any distance, even smaller than one unit in
graphics coordinates. If used in combination with the SCROLL command, it en-
ables smooth (or “fine”) text layer scrolling.

To hide the process of adding new text lines or columns at the edge of the
screen, set the @OVERSCAN system variable to a non-zero value. This will ex-
tend all screen layers by two characters in every direction, ensuring that at least
one row or column of characters is always beyond the screen edge. This is where
you can add new characters invisibly.

Scrolling the graphics layers is also achieved using the @NUDGE system array.
Because there are two layers, you can scroll by one complete screen before hav-
ing to draw more graphics. To place both layers in front of, or behind text, change
the @TEXTLAYER system variable.

Large scrolling graphics can also be achieved with just one layer, by switching it
to vector mode using the VECTOR command. In this mode, graphics drawn on
that layer are not rasterized immediately, but are kept as vectors, and rasterized
during each screen refresh. This slows down screen updates, especially with very
complex graphics, but it allows you to draw images that are much larger than the
screen, and then @NUDGE them around to reveal different parts.

10

Sprites

Besides the main CPU, some vintage machines had special chips, that could draw
additional objects over (or under) the normal “playfield” graphics. These objects
were commonly called sprites, although ATARI preferred the terminology “play-
ers” and “missiles”.

8ASIC supports loading single sprites, or entire sprite maps (also known as
“sprite sheets”) from JPEG or PNG images, using the SPRITEMAP command.
In case of PNG, transparency is fully supported. On sprite maps, multiple sprites
or multiple animation frames have to have the same size, and have to be ar-
ranged in rows and columns.

Once a sprite map is loaded, sprites can be set up to display frames from it using
the SPRITEDEF command, with either trilinear or nearest neighbor sampling.
Sprites can be freely positioned, rotated, and scaled (proportionally or stretched)
using the SPRITEPOS command. The can also be placed in front or behind
any of the three screen layers, made semi-transparent, or set to use an alternate
blending mode using the SPRITEBLEND command.

Sprite parameters can also be accessed via system arrays. @MAP controls from
which sprite map the sprite will source its content, while @FRAME sets which
frame from the sprite map will be displayed. @OPACITY sets each sprite's
overall opacity, @BLENDMODE sets the blending mode, @FILTER turns the
filtering on or off, and @LAYER specifies where in the screen drawing order the
sprite will be drawn. The position of each sprite is controlled by @POSX and
@POSY arrays, rotation by @ROTATION, and uniform sprite scale by @S-
CALE. Sprites can also be scaled non-uniformly, by setting the corresponding
items in the @SCALEX and @SCALEY arrays instead.

The number of active sprites is limited only by your machine's available video
memory and GPU performance.

8ASIC currently lacks sprite collision detection, which in case of some vintage
machines was implemented in the aforementioned special chips. This might be
added in a future release, but fast collision detection of arbitrarily-transformed
high-resolution bitmaps is not a trivial task.

11

Sound

In lieu of a sound chip, 8ASIC has a 16-voice software synthesizer, capable of
generating multiple basic waveforms. Sounds and musical notes are triggered
using the SOUND command, and the various properties of the 16 voices can be
controlled via system variables.

The SOUND command can be issued with up to 4 arguments. Without any argu-
ments, it acts as a “note off” to all channels. Depending on the release time of the
channels' envelopes, (see @RELEASE) this might not turn off all sound imme-
diately. To do that, reset the machine using the F5 key.

The first argument of the SOUND command is the voice number, ranging from 1
to 16. If no further argument is given, this is interpreted as a “note off” for that
particular voice.

The second argument is either a frequency in Hz, or a string containing a note
name in scientific, or Helmholtz notation. If this second argument is provided,
SOUND acts as a “note on” for the selected voice. The voice will start playing a
sound of the specified frequency, or the frequency corresponding to the speci-
fied musical note, adjusted by the voice's entry in the @PITCH system array.
The pitch of each voice can also vary over time, depending on the corresponding
value in the @PORTAMENTO system array.

The third optional argument is the relative volume at which the sound will be
played. The default volume, if the argument is not provided, is 0.75.

The fourth argument is the duration of the sound in seconds. If not provided or
zero, the sound will play until a “note off” is issued for that same voice.

The shape of the waveform produced by each voice is determined by the corre-
sponding values in the @CLIP, @PULSE, @SLOPE, @SINE, and @NOISE
system arrays. The sound of each voice then goes through a low-pass filter, con-
trolled by the @LOWPASS system array. Consult the System Variables section
for the specifics.

Volume envelopes are based on the common ADSR paradigm, and they are con-
trolled by each voice's entries in the @ATTACK, @DECAY, @SUSTAIN, and
@RELEASE system arrays. In terms of mixing, each channel has a @VOLUME
and @PAN parameter, with the latter employing the simple -3 dB pan rule.

When it comes to effects, there's @TREMOLO and @VIBRATO, and the fre-
quency shared by both of them can be set by writing to the @LFO system array.

The output of the synthesizer can be recorded to a .WAV file using the RECORD
command. It works in a way similar to the SAVE command, where a file name
can be specified directly in an argument, or via an OS file save dialog. The
recording can be stopped by resetting the virtual machine using the F5 key.

12

Speech

Besides sound synthesis, 8ASIC also gives you access to the text-to-speech fea-
tures of your operating system, via the SAY and VOICE commands, and
@VOICE, @VOICES, @VOICENAME$, and @VOICELOCALE$ system
variables.

SAY works in a manner similar to the PRINT command, but instead of printing
text on the screen, it reads it out aloud. Also similar to PRINT, separating ex-
pressions by a comma produces a slight pause in the speech, whereas a semi-
colon connects two expressions into a single utterance. Ending an utterance with
a comma or semicolon causes the SAY command to block, until the utterance is
spoken in its entirety. Otherwise, execution will continue immediately, and the ut-
terance will be spoken in parallel.

Note that despite this optionally parallel nature of the SAY command, only one
utterance can be spoken at a time. SAYing a new one interrupts the one current-
ly being said. Also, the output of SAY is neither recorded into the file saved by
RECORD, nor is it interrupted by END, or by resetting the virtual machine us-
ing the F5 key.

The names of the text-to-speech voices available to 8ASIC can be looked up in
the @VOICENAME$ array, and their total number in the @VOICES variable.
The current voice is in @VOICE. For correct pronunciation, it's important to
match the language of the voice, to the language of the text being spoken. The
languages of the available voices can be looked up in @VOICELOCALE$.

To select a voice, you can use the VOICE command, either with a numerical ar-
gument, in which case it's interpreted as a one-based index into the voice array,
or with a string argument, which is matched against all the available voice names.
As an alternative, you can also set the @VOICE variable directly.

13

Keyboard and Mouse

Keyboard input in 8ASIC is mostly period-correct, with GET, INKEY and
INKEY$ working as you'd expect. In addition to these commands, you can also
query the @KEY system array, to determine which keys are currently pressed.
The key codes returned by GET and INEKY correspond to items in this array.
Some of these codes are straight-forward ASCII values – 65 for A, 66 for B, and so
on, others less so.

In immediate mode, the mouse can be used to move the text cursor. In run mode,
the mouse position (in graphics coordinates) can be queried by reading the
@MOUSEX and @MOUSEY system arrays. Note that because the 8ASIC win-
dow can't always be divided into a whole number of text characters in both X and
Y directions, one of the mouse coordinates can be negative (if the mouse is at the
very edge of the window).

The state of (up to 32) mouse buttons is stored in @BUTTON. The following ta-
ble lists which item in this array corresponds to which button:

Index Button

1 Left

2 Right

3 Middle

4 Back

5 Forward

6 Task

7-32 Any extra buttons your mouse might have

You can track mouse button presses and double-clicks via the @CLICK and
@DBLCLICK system arrays. These are 2-dimensional arrays, where the first di-
mension is the button index, (see table above) and the second dimension is the
coordinate, X (1) or Y (2), where that button was last pressed or double-clicked.

In order to track multiple clicks in the same location, you can set items in these
arrays to impossible coordinates (-1000 for example), then wait until they change
back to normal values. The same can be done with the @MOUSEX and
@MOUSEY variables to track mouse movements.

14

BASIC Keywords

8ASIC implements a super-set of BASIC keywords from most 8-bit machines. The
goal was to be able to type in almost any old BASIC program, and have it work
with minimal or no changes. In cases where there was a conflict between the var-
ious BASIC implementations, I tried to pick the one which seemed most logical to
me.

AFTER aexpr[,aexpr] GOSUB aexpr
AFTER aexpr[,aexpr] GO SUB aexpr

Sets up a one-shot timed interrupt that will occur after the period of time (in sec-
onds) specified in the first argument. If the second, optional argument is also pro-
vided, it's interpreted as the interrupt's priority (with the default priority being
1). Note that two interrupts with the same priority can't be set, and setting the
second one will replace the first one. The theoretical time resolution is one mil-
lisecond, but this can rarely be achieved in practice. To return from interrupt
code, use RETURN like with any normal subroutine. See also EVERY.

AT aexpr,aexpr
LOCATE aexpr,aexpr
POSITION aexpr,aexpr

Moves the text cursor to the specified position. The arguments are interpreted as
X and Y coordinates, with their origin in the top left corner of the screen.

BACKGROUND

After this command is executed, all subsequent vector graphics objects will be
drawn in the background (behind text by default). This is the default. See also
FOREGROUND, and @TEXTLAYER.

BACKWARD

Moves the turtle backward by the specified distance (in graphics coordinate
units). See also FORWARD.

BOX aexpr,aexpr,aexpr,aexpr[,expr[,expr]]

Draws a box filled with the current brush color, and outlined with the current pen
color. The first four mandatory arguments are interpreted as x, y, width, and
height. The fifth and sixth arguments, if provided, are interpreted as pen and
brush colors. If they are strings, these will be looked up in the palette of named
colors.

15

BRUSH expr

Sets the background color for any subsequently written text characters, and fill
color for boxes, circles, and polygons. Default is 0, meaning transparent. If the ar-
gument is a string expression, it will be looked up in the palette of named colors.
BRUSH can also be used in-line within a PRINT statement, in which case it
sets the brush color until the end of that statement. See also PEN and PAPER.

BRUSHDOWN

Puts the turtle's brush down (starts drawing a filled polygon behind the turtle).
See also BRUSHUP, PENDOWN, PENUP.

BRUSHUP

Lifts the turtle's brush up (stops drawing a filled polygon behind the turtle). See
also BRUSHDOWN, PENDOWN, PENUP.

BYE

Shuts down 8ASIC.

CIRCLE
aexpr,aexpr,aexpr[,aexpr[,expr[,expr]]]

Draws a circle with the specified center (first two arguments, interpreted as X
and Y coordinates), and radius (third argument). If an fourth argument is given,
it's interpreted as the vertical radius, and if the horizontal and vertical radii don't
match, the command draws an ellipse. The fifth and sixth arguments, if provided,
are interpreted as pen and brush colors. If they are strings, these will be looked
up in the palette of named colors.

CLR
CLEAR

Sets all variables to zero, frees all strings and arrays.

CLS [aexpr]

Clears the screen, and erases all vector graphics objects. If the optional argu-
ment is provided, it's interpreted as a bit mask, indicating which layers should be
cleared. If bit 1 is set, the background will be cleared, bit 2 clears text, and bit 3
the foreground. CLS 5 for example, will clear all graphics, both background
and foreground, but not text.

16

CONT
RESUME

Continues execution from where it was stopped by an error or by pressing the
Break or Ctrl+B key.

CURSOR bexpr

Turns the text cursor on or off, depending on the value of the provided Boolean
expression. See also @CURSOR.

DATA item[,item2,...]

Creates data items, which can then be read into variables using the READ com-
mand. Data items can be strings or numbers, and are separated by commas. C64-
style quoted strings are supported, and whitespace surrounding unquoted
strings will be removed.

DEF [FN] name(variable[,variable,...])[=]expr

Defines, or re-defines a user function. Variables listed within the parentheses be-
come the parameters of the function, and are local to it. The FN keyword is op-
tional, as is the equals sign after the parameter list.

DEG

Switches the angular unit to degrees. See also RAD.

DEMO [sexpr]

Same as LOAD but defaults to the 8ASIC built-in demo folder, instead of the
user's documents folder.

DIM array(aexpr[,aexpr,...])[,...]

Dimensions numerical or string arrays. Non-array string dimensioning is option-
al.

17

DRAW [TO] aexpr,aexpr[,expr,[expr]]
DRAWR aexpr,aexpr[,expr[,expr]]
DRAWTO aexpr,aexpr[,expr[,expr]]

Draws a line from the last coordinates to the ones passed to this command. In the
case of DRAWR, the coordinates are interpreted as relative to the last ones used
for any drawing command. The third and fourth arguments, if provided, are inter-
preted as the pen and brush colors. If they are strings, they will be looked up in
the palette of named colors.

If the turtle's brush is down, these commands behave like the equivalent
VERTEX or VERTEXR commands, in that they add a new point to the current
filled polygon.

See also PLOT, PLOTR, MOVE, MOVER, VERTEX, and VERTEXR.

END

Ends any currently running program, clears the return stack, stops all timed in-
terrupts, and sends a “note off” command to all synthesizer voices.

ENTER sexpr

Same as LOAD, but merges the program from file with the one already in memo-
ry. In case of line number conflicts, the newly loaded lines take precedence.

EVERY aexpr[,aexpr] GOSUB aexpr
EVERY aexpr[,aexpr] GO SUB aexpr

Sets up a periodic timed interrupt that will occur each time the period of time (in
seconds) specified in the first argument elapses. If the second, optional argument
is also provided, it's interpreted as the interrupt's priority (with the default priori-
ty being 1). Note that two interrupts with the same priority can't be set, and set-
ting the second one will replace the first one. The theoretical time resolution is
one millisecond, but this can rarely be achieved in practice. To return from inter-
rupt code, use RETURN like with any normal subroutine. See also AFTER.

FAST

Instructs 8ASIC to execute code as fast as possible. On current machines, this
means hundreds of thousands of lines per second. Note that the speed of com-
mands that output to the screen may also be limited by the screen refresh fre-
quency, depending on the REFRESH mode. See also SLOW.

[FN] name(expr[,expr,...])

Call a previously defined user function. The FN keyword, like LET is optional.

18

FOR counter=aexpr TO aexpr [STEP aexpr]

Opening statement of a FOR loop, which needs to be matched with a corre-
sponding closing NEXT statement. For compatibility reasons, 8ASIC replicates
the ATARI bug where each loop is executed at least once, even if the end of the
range is beyond the start.

FOREGROUND

After this command is executed, all subsequent vector graphics objects will be
drawn in the foreground (in front of text by default). See also BACKGROUND,
and @TEXTLAYER.

FORWARD

Moves the turtle forward by the specified distance (in graphics coordinate units).
See also BACKWARD.

GET variable

Retrieves a keyboard code or character from the keyboard buffer. The buffer
records the last 10 keypresses. If variable is scalar, it will be set to the keyboard
code of the first key in the buffer, or to zero if no keys were pressed. If variable is
a string, it will be set to the character generated by the first key in the buffer, or
to an empty string if none. See also INKEY, INKEY$, and @KEY.

GLOBALS

Lists all existing global variables and their values.

GOSUB aexpr
GO SUB aexpr

Pushes the current program location on the stack, then jumps to specified line
number. Note that like on the ATARI, the line number can be any numerical ex-
pression.

GOTO aexpr
GO TO aexpr

Jumps to the specified line number. Same as with GOSUB, the argument can be
any numerical expression.

19

GRAPHICS aexpr[,aexpr]

Sets both @GRAPHX and @GRAPHY system variables at once, relative to text
resolution. For example, GRAPHICS 8,8 sets the coordinate range to the
default 8 x text resolution in both X and Y directions. If only one argument is pro-
vided, it will be used for both X and Y coordinates.

HEADING aexpr

Sets the turtle's heading absolutely. The current heading can be queried using
the @HEADING system variable. See also LEFT, RIGHT.

HELP

Opens this guide. It can also be opened by pressing F1.

IF bexpr THEN ...

Evaluates the expression between IF and THEN, and if the result is non-zero,
continues execution after THEN. If the result is zero, the execution continues
from the next line. If the statement following THEN is an arithmetic expression, it
is evaluated, and interpreted as a line number to jump to if bexpr is non-zero. If
the statement following bexpr is a GO... command, the THEN token can be
omitted.

INKEY

Returns the keyboard code of any currently pressed key. If multiple keys are
pressed, returns the code of the last one. See also GET, INKEY$, and @KEY.

INKEY$

Returns the character corresponding to any currently pressed key. If multiple
keys are pressed, returns the character corresponding to the last one. See also
GET, INKEY, and @KEY.

INPUT [expr;]variable[,variable,...]

If INPUT is followed by an expression and a semicolon, the result of that ex-
pression will be printed on the screen, followed by a question mark. Otherwise,
just a question mark will be printed. 8ASIC will then wait for the user to enter
comma-separated strings or numbers, which will then be stored in the specified
variables. String variables accept any input, numerical variables accept only
numbers. If the user inputs fewer than the requested number of items, ?? will be
printed, allowing the user to continue entering more data, until all variables
passed to INPUT are filled.

20

INTERRUPTS bexpr

Turns interrupts on or off, depending on the value of the Boolean expression.
Note that interrupts work only while the program is running, regardless of this
flag. See also @INTERRUPTS.

variable
LABEL variable

Creates a read-only variable set to the line number of the line on which this com-
mand is located. This variable can then be used as a target for GOTO / GOSUB
commands, but also in any other numerical expression.

LEFT aexpr

Turns the turtle to the left by the specified angle. See also HEADING, RIGHT.

[LET] variable=aexpr
[LET] variable$=sexpr

Optional keyword indicating variable assignment.

LIST [aexpr[,aexpr]]

Lists the program currently residing in memory. The optional first argument can
be used to start the listing from a particular line. If two arguments are provided,
they are interpreted as a range of lines to be listed. Either of the two arguments
can be omitted, indicating listing from the start / to the end of the program.

LOAD [sexpr]

Loads a program from the specified file into memory. If the path is relative, 8ASIC
will look for the file in the “8ASIC” sub-folder of the user documents folder.
Adding a .bas file extension is also optional, as it will be added automatically. If
no argument is given, LOAD opens an OS file dialog, permitting you to select the
file interactively.

LOCAL variable[,variable,...]

Declares one or more local variables. These variables override any global vari-
ables, and are only valid in the current scope (until RETURN). The command
has no effect if the return stack is empty (no GOSUB command was executed).
Note that all FOR loop counters are automatically local.

LOCALS

Lists all local variables. This only works if used within a subroutine, or if the pro-
gram was interrupted while a subroutine was running.

21

MOVE aexpr,aexpr[,expr[,expr]]
MOVER aexpr,aexpr[,expr[,expr]]

Moves the origin point of the next DRAW command to the specified coordinates,
without drawing a dot there, like PLOT would do. In the case of MOVER, the co-
ordinates are interpreted as relative to the last ones used for any drawing com-
mand.

Note that if the turtle's pen is down, the behavior of this command changes to that
of a PLOT or PLOTR. If the turtle's brush is down, this command instead be-
haves like VERTEX or VERTEXR.

The third and fourth arguments, if provided, are interpreted as pen and brush
colors. If they are strings, these will be looked up in the palette of named colors.
The colors are obviously only relevant if the turtle's pen and/or brush are down.

See also DRAW, DRAWR, PLOT, PLOTR, VERTEX, and VERTEXR.

NEXT [counter]

Closing statement of a FOR...NEXT loop. The counter variable, if speci-
fied, needs to match the one used in the opening FOR statement.

NEW

Erases the current program, and all variables, strings, and arrays.

OLD

Restores a program erased by NEW or a cold reset, or overwritten by OLD,
LOAD, or DEMO.

ON aexpr GOTO aexpr[,aexpr,...]
ON aexpr GOSUB aexpr[,aexpr,...]
ON aexpr GO TO aexpr[,aexpr,...]
ON aexpr GO SUB aexpr[,aexpr,...]

Evaluates the expression between ON and GO..., and interprets its value as a
one-based index into the comma-separated list of expressions following the
GO... command. If the value is out of range, execution simply continue with the
next command. If one of the expressions is successfully chosen, the GO... com-
mand is then executed with the expression's value as the destination line num-
ber.

PAPER aexpr

Sets background color of the screen. This color is visible wherever there is noth-
ing drawn or written. Default is a custom royal blue color. If the argument is a
string expression, it will be looked up in the palette of named colors. See also
BRUSH and PEN.

22

PEN expr

Sets the foreground color for any subsequently written text characters, and out-
line color for lines, boxes, circles, and polygons. Default is $FFFFFFFF,
meaning opaque white. If the argument is a string expression, it will be looked
up in the palette of named colors. PEN can also be used in-line within a PRINT
statement, in which case it sets the pen color until the end of that statement. See
also BRUSH and PAPER.

PENDOWN

Puts the turtle's pen down (starts drawing a line behind the turtle). See also
BRUSHDOWN, BRUSHUP, PENUP.

PENUP

Lift the turtle's pen up (stops drawing a line behind the turtle). See also
BRUSHDOWN, BRUSHUP, PENDOWN.

PI

3.1415926535897932384626433832795

PAUSE aexpr

Pauses execution for the specified number of seconds (can be fractional).

POP

Removes the topmost, most recent entry from the loop / return stack. This is nec-
essary in order to be able to leave a FOR loop early (via GOTO).

PLOT aexpr,aexpr[,expr[,expr]]
PLOTR aexpr,aexpr[,expr[,expr]]

Draws a circular dot at the specified coordinates. In the case of PLOTR, the co-
ordinates are interpreted as relative to the last ones used for any drawing com-
mand. The size of the dot is usually large enough so that two dots spaced 1 unit
apart, at the default coordinate range, touch each other. This is however depen-
dent on the OpenGL implementation in use on the host machine.

The third and fourth arguments, if provided, are interpreted as pen and brush
colors. If they are strings, these will be looked up in the palette of named colors.
The brush color is only relevant if PLOT or PLOTR is used to start a new filled
polygon, or if the turtle's brush is down, in which case these commands behave
like VERTEX and VERTEXR.

See also DRAW, DRAWR, MOVE, MOVER, VERTEX, and VERTEXR.

23

? expr[;expr][,expr][...]
PR expr[;expr][,expr][...]
PRINT expr[;expr][,expr][...]

Evaluates and displays expressions on the screen. The expressions can be of any
type, and they can be separated by semicolons or commas. Expressions separat-
ed by a semicolon will be displayed without any intervening whitespace. A com-
ma on the other hand will first move the cursor to the next multiple of 8 charac-
ters, before printing the following expression. Ending the list of expressions with
a semicolon or a coma will prevent the cursor from automatically advancing to
the next line.

PEN and BRUSH commands can be used within a PRINT statement, to set the
pen and brush colors until the next such command, or the end of the PRINT
statement. The special TAB() function can also be used within a PRINT state-
ment, to set the cursor position.

See also TEXT.

PUT aexpr

The equivalent of PRINT CHR$(aexpr);.

RAD

Switches the angular unit to radians. This is the default. See also DEG.

RANDOMIZE [aexpr]

Sets the seed of the pseudo-random number generator to the specified value, or
to the current time since epoch in milliseconds, if no argument is given.

RASTER

Sets the current graphics layer (background or foreground) into raster mode,
which means that any graphics drawn onto this layer will be clipped to the
screen area, and rasterized immediately. This is the default mode. See also
VECTOR.

READ variable[,variable...]

Reads a one or more DATA item(s) into the provided variable(s). Any type of
item can be read into a string variable, whereas only numbers can be read into
numerical variables. See also RESTORE.

24

RECORD [sexpr]

Starts recording the output of the software synthesizer to the specified file. If the
path is relative, 8ASIC will save the file in the “8ASIC” sub-folder of the user doc-
uments folder. Adding a .WAV file extension is also optional, as it will be added
automatically. If no argument is given, RECORD opens an OS file dialog, permit-
ting you to choose the output file interactively.

REFRESH [bexpr]

8ASIC uses implicit double-buffering. Normally, the buffers are flipped after ev-
ery command which alters the contents of the screen, either graphical or text.
This behavior can be controlled using the REFRESH command. If provided an
argument, REFRESH turns automatic buffer flipping on or off, based on
whether the expression is non-zero or zero. Without an argument, it triggers a
buffer flip. This allows you to draw many objects on the screen invisibly, then re-
veal them all at once. Note that buffer flipping is always synchronized with the
vertical blanking period of your display.

. text
REM text

Makes the parser ignore anything beyond this keyword, until the end of the pro-
gram line.

RENAME variable,new

Renames variable to new throughout the entire program.

RENUMBER [aexpr[,aexpr[,aexpr[,aexpr]]]]

Changes the numbers of program lines according to the arguments given. The
first argument is the new starting line number (10 if not provided). The second
argument is the step by which the line number will be increased for each subse-
quent line (10 if not provided). The third and fourth arguments specify the first
and last original line number between which renumbering should happen. They
default to the first and last line respectively.

Note that automatic renumbering can't deal with GOTO and GOSUB line num-
bers that are calculated from numerical expressions. If such a destination line
number is encountered, RENUMBER will print a warning.

RESTORE [aexpr]

If used without argument, it resets the read location to the first DATA item in the
program. If an argument is provided, the read location is set to the first DATA
item found on or after the line with that number.

25

RETURN

Pops the topmost return location from the stack, then jumps to it.

RIGHT aexpr

Turns the turtle to the right by the specified angle. See also HEADING, LEFT.

RUN [aexpr]

Runs the current program from the specified line, or from the start if no line is
given. Also performs an implicit CLR.

SAVE [sexpr]

Saves the current program to the specified file. If the path is relative, 8ASIC will
save the file in the “8ASIC” sub-folder of the user documents folder. Adding a
.bas file extension is also optional, as it will be added automatically. If no argu-
ment is given, SAVE opens an OS file dialog, permitting you to choose the save
location and file name interactively.

SAY expr[;expr][,expr][...]

Evaluates and reads out expressions using the text-to-speech engine built into
your OS. The expressions can be of any type, and they can be separated by semi-
colons or commas. Expressions separated by a semicolon will be read out one af-
ter another, while a comma will introduce a brief pause. Ending the list of expres-
sions with a semicolon or a coma, will cause 8ASIC to wait until the text-
to-speech engine finishes reading the entire utterance. Otherwise, the execution
will continue immediately. See also VOICE, @VOICES, @VOICE, and
@VOICENAME$.

SCROLL [aexpr[,aexpr]]

If no argument is provided, this command scrolls the screen up by one line. One
argument is interpreted as the number of lines to scroll up (positive) or down
(negative). Two arguments are interpreted as X and Y scroll distance in charac-
ters.

SLOW [aexpr]

Slows down execution to a “period correct” speed. The default setting, if the pa-
rameter is omitted, is 200 lines per second. The maximum speed in slow mode is
about 1000 lines per second, since the granularity of the delay is 1 ms.

26

SOUND [aexpr[,expr[,aexpr]]]

Without arguments, SOUND sends a “note off” to all software synthesizer voices.
With one argument, it acts as a “note off” for that particular voice only. The sec-
ond argument can either be a frequency in Hz, or a string containing a musical
note in the scientific or Helmholz notation; "C#4", "Bb3", "c'", "F,,,"
and so on. In this case, SOUND sends a “note on” to the selected voice, with the
specified frequency, or the frequency corresponding to the specified musical
note. The octave range for musical notes is from 0 to 8, or sub-contra to 5-line.
The third optional argument is the sound's relative volume as a fraction from 0 to
1. The default volume is 0.75. The fourth optional argument is the sound's dura-
tion in seconds. If non-zero, it will cause a “note off” to be sent to the same voice
automatically, after the specified time period. This is especially useful for sound
effects.

SPRITEBLEND aexpr,aexpr[,aexpr[,aexpr]]

Sets the opacity of the sprite with the number specified in the first argument to
the value of the second argument, where 0 is transparent and 1 is opaque. The
optional third argument can be used to set where in the screen drawing order the
sprite will be drawn. Valid values are from 1 (behind all layers) to 4, (in front of all
layers) which is also the default. The optional fourth argument can be used to set
the sprite's blending mode, which can be either 1 for normal blending, or 2 for
“screen” mode blending useful for some special effects.

See also @OPACITY, @LAYER and @BLENDMODE.

SPRITEDEF aexpr,aexpr[,aexpr[,bexpr]]

Sets the sprite with the number specified in the first argument to use the sprite
map with the ID in the second argument. The optional third argument can be
used to display a particular frame from the sprite map, if the sprite map in ques-
tion contains multiple frames. The final fourth argument can be used to turn trilin-
ear filtering on or off for this sprite.

See also @MAP, @FRAME, and @FILTER.

SPRITEMAP aexpr,sexpr[,aexpr[,aexpr]]

This command loads the image file specified in the second argument, and if the
file can be successfully decoded, it will be stored in the sprite map list under the
numerical ID specified in the first argument. The optional third and fourth argu-
ments are interpreted as the number of frames stored in the sprite map per row,
and per column. They both default to one. If the path to the source file is relative,
8ASIC will search for it in the documents folder, and in the demo folder.

27

SPRITEPOS
aexpr,aexpr,aexpr[,aexpr[,aexpr[,aexpr]]]

Sets the transformation of the sprite with the number specified in the first argu-
ment. The second and third arguments are interpreted as X and Y position. The
optional fourth argument is the rotation in degrees or radians, depending on the
current angular unit. The optional fifth argument, if it's the last one, sets propor-
tional scale. If a sixth argument is also provided, the fifth and sixth arguments are
interpreted as separate X and Y scale.

The origin point for these transformations is the sprite's center.

See also @POSX, @POSY, @ROTATION, @SCALE, @SCALEX, and
@SCALEY.

STOP

Stops the execution of the program, and prints “STOPPED AT LINE” fol-
lowed by the line number where it was stopped. Execution can be resumed using
the CONT command.

TAB aexpr[,aexpr]

Moves the cursor to the specified column of the current line, or the next line if the
target column is to the left of the current cursor position. If two arguments are
provided, the command works like AT instead. See also TAB().

TEXT aexpr,aexpr,expr[;expr][,expr][...]

A combination of AT and PRINT in one command. The first two arguments are
interpreted as the coordinates for the AT or POSITION command, and the re-
sults of the remaining expressions are printed at that position.

TIME

Seconds elapsed since 8ASIC started. This value is precise to a couple of mil-
liseconds, and can be used for animation timing. See also @TIME$.

TRACER bexpr
TURTLE bexpr

Sets the opacity of the built-in turtle sprite from 0 (fully transparent, default) to 1
(fully opaque). Note that turtle graphics is available regardless of whether the
turtle sprite is visible or not.

28

TRAP aexpr

TRAP can be used to set a line number where 8ASIC jumps when it encounters
an error, instead of printing an error message and stopping. The error message
will still be stored in @ERROR$, and the line number, where the error occurred,
in @ERRORLINE. Note that after an error has been “trapped” in this fashion,
the trap line resets, and needs to be set again.

VECTOR

Sets the current graphics layer (background or foreground) into vector mode,
which means that any graphics objects drawn onto this layer will preserved as
vectors, and rasterized every time the screen is refreshed. This allows you to
draw a picture that's much larger than the screen, and show different parts of it by
changing the @NUDGE system variable. See also RASTER.

VERTEX aexpr,aexpr[,expr[,expr]]
VERTEXR aexpr,aexpr[,expr[,expr]]

Adds a new vertex to the current polygon. If no polygon is currently active,
VERTEX starts drawing a new one. The coordinates passed to VERTEXR are
interpreted as relative. New polygons (like lines) can also be started explicitly
using the PLOT or MOVE commands. 8ASIC supports polygons with an arbi-
trary number of points. Note that even though adding points to a polygon is quite
fast, it takes progressively longer as their number increases, since the polygon
has to be converted to triangles (tessellated) every time.

The third and fourth arguments, if provided, are interpreted as pen and brush
colors. If they are strings, these will be looked up in the palette of named colors.

See also DRAW, DRAWR, MOVE, MOVER, PLOT, and PLOTR.

VOICE expr

Choose the voice that will be used for SAY commands. The argument can either
be a one-based index (up to @VOICES) or a string containing the voice name.

29

Built-in Functions

ABS(aexpr)

Absolute value.

ALPHA(aexpr)

Returns the alpha (opacity) value of a color.

ASC(sexpr)
CODE(sexpr)

UTF32 code of the first character of the string argument.

ATN(aexpr)

Arc tangent. See also DEG and RAD.

ATN2(aexpr,aexpr)

Arc tangent taking two arguments, Y and X. Returns a correct result for all 4 quad-
rants of the circle. See also DEG and RAD.

BLEND(aexpr,aexpr,aexpr)

Interprets the first two arguments as colors, and blends them using the third ar-
gument as the blending factor. The alpha value of the second color is multiplied
with the blending factor, then the second color is blended over the first.

BLUE(aexpr)

Returns the blue component of a color.

CHR$(aexpr)

Character corresponding to UTF32 code in the argument.

CLAMP(aexpr,aexpr,aexpr)

Returns the first argument clamped to the range formed by the second and third
arguments.

CLOG(aexpr)

Base 10 logarithm.

30

COLOR(expr)

If the expression in the argument is a string, it is interpreted as the name of a col-
or to be retrieved from the palette. If a color with such a name doesn't exist,
COLOR() will return zero.

If the input expression is numerical, it is interpreted as a one-based index into
the alphabetically-sorted palette. If the index is negative, it is also interpreted as
an index into the palette, but sorted by hue and luminance instead. The total
number of colors in the palette can be queried using @COLORS.

COLOR$(aexpr)

Returns the name of the color in the argument, or an empty string if that color is
not in the palette.

COS(aexpr)

Cosine. See also DEG and RAD.

DEC(sexpr)

Convert a hexadecimal number in a string to a number.

EXP(aexpr)

The number e raised to the power specified in the argument.

FRAC(aexpr)

Returns the fractional part of the value passed in the argument.

GREEN(aexpr)

Returns the green component of a color.

HEX$(aexpr)

Returns the hexadecimal representation of the number in the argument.

INT(aexpr)

Returns an integer that is less than or equal to the argument.

31

INSTR(sexpr,sexpr[,aexpr])
UINSTR(sexpr,sexpr[,aexpr])

Returns the 1-based position of the substring (second argument) within a string
(first argument) or 0 if not found. The optional third argument can be used to start
the search from a position other than 1. The UINSTR variant is case-insensitive.

LCASE$(sexpr)

Returns the string in the argument converted to lowercase.

LEFT$(sexpr,aexpr)

Returns the specified number of characters from the start of a string.

LEN(sexpr)
LEN(array[,aexpr])

Returns the length of the string expression or array in the argument. For multi-di-
mensional arrays, the size of the last dimension is returned, unless a dimension is
specified in the second argument.

LOG(aexpr)

Returns the natural logarithm of the input expression.

MAX(aexpr,aexpr)

Returns the larger of the two arguments.

MID$(sexpr,aexpr,aexpr)

Returns the specified number of characters (third argument) from the middle of
the string (second argument). The same functionality can be achieved by the
substring syntax, so this function is included only for compatibility.

MIN(aexpr,aexpr)

Returns the smaller of the two arguments.

MIX(aexpr,aexpr,aexpr)

Mixes two colors (first two arguments) together, using the third argument as a
blending factor.

RIGHT$(sexpr,aexpr)

Returns the specified number of characters from the end of a string.

32

RND(aexpr)

Returns a random non-negative real number lesser than the value of the input ar-
gument. If the argument is 0, it's treated as if it was 1 (for compatibility reasons). If
the argument is negative, the random number generator will be re-seeded from
the system time (like on the C64).

RAND(aexpr)

Returns a random non-negative integer lesser than the value passed in the argu-
ment.

RED(aexpr)

Returns the red component of a color.

RGB(aexpr,aexpr,aexpr)

Combine red, green, and blue components (0...255 range) into a color. The alpha
component of the resulting color will be set to 255 ($FF).

RGBA(aexpr,aexpr,aexpr,aexpr)

Combine red, green, blue, and alpha components (0...255 range) into a color.

ROUND(aexpr)

Round to the nearest integer.

SGN(aexpr)

Returns -1 if the value of the argument is negative, 1 if positive.

SIN(aexpr)

Sine. See also DEG and RAD.

SQR(aexpr)

Square root.

STR$(aexpr[,aexpr])

Converts the number in the first argument to a string. The second, optional argu-
ment controls the precision (number of significant digits) of the conversion.

33

TAB(aexpr,[aeprx])

This function can only be used within PRINT statements. It moves the cursor to
the specified column of the current line, or the next line if the target column is to
the left of the current cursor position. If two arguments are provided, the function
works like the AT command instead. TAB() also acts as an expression separa-
tor, similar to a semicolon or a comma. See also TAB (keyword).

TAN(aexpr)

Tangens. See also DEG and RAD.

TRUNC(aexpr)

Round towards zero.

UCASE$(sexpr)

Returns the string in the argument converted to uppercase.

VAL(sexpr)

Converts a number in a string to a normal number.

34

Operators

This table lists all operators in the order of decreasing precedence. Operators
with equal precedence are grouped together.

Operator Result

+ (with strings) Concatenated strings

= (with strings) True (1) if strings are equal

<> (with strings) True (1) if strings are not equal

<= (with strings) True (1) if the first string is lesser or equal

>= (with strings) True (1) if the first string is greater or equal

< (with strings) True (1) if the first string is lesser

> (with strings) True (1) if the first string is greater

- (unary) Negative value

+ (unary) Unchanged, operator is purely cosmetic

NOT (unary) True (1) if operand is false (0)

^ or ** First number raised to the power of the second

SHR First integer bit-shifted right by the second

SHL First integer bit-shifted left by the second

& Bitwise AND of the two integers

! Bitwise OR of the two integers

% Bitwise XOR (exclusive or) of the two integers

* Multiplication of the two operands

/ Division of the first operand by the second operand

MOD The remainder of the division of the first by the second operand

DIV Integer division of the first operand by the second operand

+ The sum of the two operands

- The difference between the first and second operands

= (with numbers) True (1) if the operands are equal

<> (with numbers) True (1) if the operands are not equal

<= (with numbers) True (1) if the first operand is lesser or equal

>= (with numbers) True (1) if the first operand is greater or equal

< (with numbers) True (1) if the first operand is lesser

> (with numbers) True (1) if the first operand is greater

35

System Variables

Instead of PEEK and POKE, 8ASIC has a set of special system variables, which
control various aspects of the virtual machine. To avoid polluting the global
namespace with many new keywords, all system variable names start with an @
sign. They can be simple scalar variables or arrays, and some can even be both.

@ATTACK

This 16-element array controls the attack times (in seconds) of the ADSR en-
velopes of the individual software synthesizer voices. Attack is the time it takes
for the sound to reach peak volume after "note on". See also @DECAY, @SUS-
TAIN, and @RELEASE.

@BLENDMODE

This system array controls the blending modes of individual sprites. A value of 1
means normal blending, 2 is “screen” mode blending. More blending modes may
be added in the future.

@BRUSH

If not subscripted, @BRUSH controls the current brush color. The brush color is
used to draw text character backgrounds, and to fill polygons drawn using the
VERTEX command. If subscripted, (i.e. @BRUSH(X, Y)) it controls the
background color of the text character at the coordinates [X,Y], which are ze-
ro-based, with the origin in the top left corner.

@BRUSHDOWN

Controls whether the turtle's brush is down (painting) or up (not painting). See
also BRUSHDOWN.

@BUTTON

This read-only array contains the current state of all mouse buttons (up to 32).
The left button is at index 1, the right button at index 2, the middle button at in-
dex 3, and any additional buttons at the remaining indices. If an item has the val-
ue of 1, it means the corresponding button is currently pressed. See also
@CLICK, @DBLCLICK, @MOUSEX/Y and @WHEEL.

@CHAR

If not subscripted, @CHAR controls the character code at the location of the text
cursor. If subscripted, (i.e. @CHAR(X,Y)) it can be used to read or set the
character code of any screen character.

36

@CLICK

This array contains the positions (in graphics coordinates) where each of the
mouse buttons was last pressed. The first subscript selects the button, (1 to 32)
and the second one the X or Y coordinate (1 or 2). By setting entries in the array
to impossible values, (like -1000) and then waiting until they change back to
valid positions, you can track whether mouse buttons were clicked. See also
@BUTTON, @DLBCLICK, @MOUSEX/Y, and @WHEEL.

@CLIP

The amount of clipping applied to the waveform of each software synthesizer
voice. Zero means no clipping (which produces a saw, triangle, or sine waveform,
depending on other parameters), while one means full clipping (square wave-
form). Default is one, full clipping. See also @NOISE, @PULSE, @SINE, and
@SLOPE.

@COLORS

This read-only variable holds the total number of named colors in the 8ASIC col-
or palette.

@COLUMNS
@LINES

These two system variables control the number of text columns and lines dis-
played of the screen. @COLUMNS sets the number of columns, and @LINES
the number of lines. Note that these values are not independent from each other,
but setting one changes the other, depending on the size and aspect ratio of the
8ASIC window. Changing the text resolution will also change the range of graph-
ics coordinates.

@CURSOR

@CURSOR controls whether the text cursor is visible (1) or not (0). See also
CURSOR.

@CURSORX
@CURSORY

These two system variables together control the location of the text cursor.
@CURSORX controls the X coordinate, and @CURSORY the Y coordinate. See
also AT.

@DATE$

Contains the current date as a string.

37

@DBLCLICK

This array contains the positions (in graphics coordinates) where each of the
mouse buttons was last double-clicked. The first subscript selects the button, (1
to 32) and the second one the X or Y coordinate (1 or 2). See also @BUTTON,
@CLICK, @MOUSEX/Y, and @WHEEL.

@DECAY

This array controls the decay times (in seconds) of the ADSR envelopes of the in-
dividual software synthesizer voices. Decay is the time it takes for the sound to
reach the sustain volume after the attack. See also @ATTACK, @SUSTAIN,
and @RELEASE.

@ERROR$

Contains the last error message.

@ERRORLINE

Contains the line number of the last error, or -1 if the error occurred in direct
mode.

@FILTER

This system array controls whether individual sprites are filtered (using trilinear
interpolation) or not (nearest neighbor “pixelated” interpolation).

@FRAME

This system array controls which frame is being shown by each sprite. Of course
this works only if the sprite map associated with a sprite has multiple frames. The
default is to show the first frame.

@GRAPHX
@GRAPHY

These two system variables control the origin, and the range of coordinates for
graphics commands (PLOT, DRAWTO and VERTEX). @GRAPHX sets the X
(horizontal) origin and range, while @GRAPHY sets the Y (vertical) origin and
range. The default value for both is the text screen size times 8.

The default origin (zero) of graphical coordinates is in the bottom left corner of
the screen. To move the X or Y origin to the opposite edge of the screen, set one
or both elements of the array to a negative value. @GRAPHY=-200 sets the
range of Y coordinates to 200, and the origin to the top edge of the screen.

See also GRAPHICS.

38

@HEADING

Controls the turtle's absolute heading. See also HEADING.

@INTERRUPTS

This system variable controls whether interrupts are enabled. Note that inter-
rupts work only while the program is running, regardless of the value of this vari-
able. See also INTERRUPTS.

@KEY

This read-only array allows you to find out whether a particular key is being held
down. The key codes to be used as indices into this array can be obtained from
the GET command. The array holds ones for all keys which are currently being
held down, and zeroes for all others.

@KEYVOLUME

This system variable controls the volume of the sound played after each key-
stroke. The range of values is 0 (key sound off) to 1 (full volume), with 0.5 being
the default. The value of this system variable will be saved to the settings file, and
restored next time 8ASIC is started.

@LAYER

This system array controls the screen layer (drawing order) of each sprite. Valid
values are from 1 (behind all layers) to 4 (in front of all layers).

@LFO

The frequency (in Hz) of the low-frequency oscillator associated with each syn-
thesizer voice. The low-frequency oscillator drives the tremolo and vibrato ef-
fects. The default frequency is 0, meaning the LFO is disabled.

@LOWPASS

The frequency (in Hz) of the low-pass filter applied to each synthesizer voice. The
default value is 10 Khz, and the range is from 50 Hz to 20 Khz.

@MAP

This system array controls which sprite map is associated with each sprite. The
default value of 0 means “none”, and has to be changed to a valid ID of a loaded
sprite map, in order for the sprite to appear on screen.

39

@MARGINL
@MARGINR

These two system variables control the left and right margins, used when print-
ing text on the screen. @MARGNL controls the left margin, and @MARGINR
the right margin. Default values are 2 left and 0 right.

@MOUSEX
@MOUSEY

These two system variables contain the current mouse position in graphics coor-
dinates. By changing one or both coordinates to an impossible value (like -1000),
you can track whether the mouse moved. See also @BUTTON, @CLICK,
@DBLCLICK, and @WHEEL.

@NOISE

The amount of noise added to the waveform of each software synthesizer voice.
Zero means no noise, while one completely replaces the waveform with noise.
The noise has the same frequency as the sound. Default is zero, no noise. See also
@CLIP, @PULSE, @SINE, and @SLOPE.

@NUDGE

Shifts screen layers (background, text, foreground) by the specified distance in
graphics coordinates. The first subscript is the layer to be shifted, with 1 for the
background, 2 for text, and 3 for the foreground. The second subscript is the axis,
with 1 for X and 2 for Y. The nudge distance is not limited in any way – you can
just slightly shift a layer or move it completely off the screen. See also @OVER-
SCAN.

@OPACITY

This system array controls the opacity of each particular sprite. Valid values are
from 0 (fully transparent) to 1 (fully opaque).

@OVERSCAN

If this Boolean system variable is set to a non-zero value, it adds two characters
worth of overscan to all edges of the screen. This ensures that at least one row or
column of characters is fully off the screen on each of the four sides. Overscan in
conjunction with @NUDGE allows you to smoothly scroll the text screen, be-
cause you can hide the addition of new lines or columns behind the edge.

40

@PAN

This array controls the stereo positions of the individual software synthesizer
voices. A value of -1 pans the respective voice hard left, 1 hard right, and 0 (de-
fault) is the center. The left & right volume levels are calculated using the -3 dB
rule. See also @VOLUME.

@PAPER

This system variable controls the overall background color of the screen, which
shows through wherever there's nothing drawn or written.

@PEN

If not subscripted, @PEN controls the current pen color. The pen color is used to
draw text characters, points, lines, and to outline polygons drawn using the
VERTEX command. If subscripted, (i.e. @PEN(X,Y)) it controls the color of
the text character at the coordinates X and Y.

@PENDOWN

Controls whether the turtle's pen is down (drawing) or up (not drawing). See also
PENDOWN.

@PITCH

This array controls the relative pitch (in octaves) of the individual software syn-
thesizer voices. A value of 0 (default) means the respective voice generates the
exact pitch passed to the SOUND command. Any other value will be added to
the pitch passed to SOUND to calculate the effective pitch.

@PLOTX
@PLOTY

These two system variables contain the last X and Y coordinates given to any
graphics command (MOVE, PLOT, DRAWTO, VERTEX, BOX or CIRCLE).
They are also updated when moving the turtle using FORWAD or BACKWARD.
Setting them is equivalent to the MOVE command.

@PORTAMENTO

This system array allows the pitch of a synthesizer voice to vary slowly over time,
instead of changing instantly. The value in the array is the time in seconds it will
take for the voice to reach a new pitch. This works only if a voice is already play-
ing a sound, and a new SOUND command with a different pitch is issued for that
voice. To change pitch instantly with a non-zero @PORTAMENTO value set,
trigger a “note off” using SOUND with just the voice number argument, then
play the second sound immediately after that.

41

@POSX
@POSY

These two system arrays control the horizontal and vertical position of sprites (in
graphics coordinates).

@PULSE

The pulse width of the waveform of each software synthesizer voice. In order for
this parameter to have any effect, the waveform needs to be clipped to some ex-
tent, and the effect of pulse width increases with clipping. Default is 0.5, a neutral
position. See also @CLIP, @NOISE, @SINE, and @SLOPE.

@RELEASE

This array controls the release times (in seconds) of the ADSR envelopes of the
individual software synthesizer voices. Release is the time it takes for the sound
to go down to zero volume after "note off". See also @ATTACK, @DECAY, and
@SUSTAIN.

@ROTATION

This system array controls the rotation of sprites (default is 0).

@SCALE
@SCALEX
@SCALEY

These three system arrays control the proportional, horizontal and vertical scale
of sprites (all defaulting to 1).

@SINE

This synthesizer voice parameter allows you to trasnform the normally straight
"slopes" of saw and triangle waveforms into more or less smooth S-shaped transi-
tions, based on the sine function. This renders the resulting sound less harsh.
Note that in order for this parameter to have any effect, the clipping level of the
respective channel needs to be lower than one. The defaut is 0, or no amount of
sine smoothing in the slopes. See also @CLIP, @NOISE, @PULSE, and @S-
LOPE.

@SIZEX
@SIZEY

These two system variables hold the last width and height given to a BOX com-
mand, or the last X and Y radius given to a CIRCLE command. You can set these
values, but it won't affect the box or circle that was already drawn on the screen.

42

@SLOPE

The overall left/right slope of the waveform of each software synthesizer voice. In
order for this parameter to have any effect, clipping needs to be less than one. If
that is the case, a slope of 0 produces a left-leaning saw waveform, a slope of 1 a
right-leaning saw waveform, and a slope of 0.5 a symmetrical triangle waveform.
A slope of 0.5, with 0 clipping and 1 sine produces a pure sine waveform. Default
slope is 1, right-leaning saw waveform. See also @CLIP, @NOISE, @PULSE,
and @SINE.

@SUSTAIN

This array controls the (linear) sustain volumes of the ADSR envelopes of the indi-
vidual software synthesizer voices. After the initial attack and decay, the sound
reaches the sustain volume, and stays there until "note off". See also @ATTACK,
@DECAY, and @RELEASE.

@TEXTLAYER

Controls where in the drawing order the text screen will be drawn. The default
value of 2 means between the background and foreground graphics layers. A
value of 1 moves the text screen behind the background, while a value of 3
moves it in front of the foreground.

@TIME$

Contains the current time as a string (read-only).

@TREMOLO

This system array controls the amount of LFO-based amplitude (volume) varia-
tion for each of the synthesizer channels. Valid values are from 0 (no variation) to
1 (maximum variation).

@TURTLE

Sets the opacity of the built-in turtle sprite.

@VIBRATO

This system array controls the amount of LFO-based frequency variation for each
of the synthesizer channels. Valid values are from 0 (no variation) to 1 (+/- one
octave).

@VOICE

Controls which voice will be used when SAY commands are issued. Valid values
are from 1 to @VOICES.

43

@VOICES

Contains the total number of text-to-speech voices available to 8ASIC. On
Windows, the situation is somewhat complicated, because there are two text-
to-speech APIs, and 8ASIC can use only some of the voices right now. On the
Mac, this problem doesn't exist, and my Macbook has no less than 47 different
voices to choose from. Keep in mind that changing the voice usually also changes
the language. See also VOICE, @VOICE, @VOICENAME$, and @VOICE-
LOCALE$.

@VOICENAME$

A read-only string array containing the names of the voices corresponding to
@VOICE values.

@VOICELOCALE$

A read-only string array containing the locales of the voices corresponding to
@VOICE values. Locales are in the format "en-US", "en-GB", "de-
DE", "it-IT" and so on.

@VOLUME

This array controls the relative (linear) volumes of the individual software synthe-
sizer voices. A value of 0 effectively turns the voice off, while 1 (default) means
full volume. Note that the final volume of sound played through each voice is also
affected by the voice's ADSR envelope, and the volume argument passed to the
SOUND command. See also @PAN.

@WHEEL

Contains the mouse's wheel position. The system variable can be reset to zero, or
any other value, to better track the relative wheel rotation. See also @BUTTON,
@CLICK, @DLBCLICK, and @MOUSEX/Y.

@WINDOWX
@WINDOWY

These two read-only system variables hold the X and Y size of the client area of
the 8ASIC window in device pixels.

44

Special Characters

8ASIC's font contains many special characters from the ATASCII and PETSCII
character sets. The following table lists they key combinations that can be used to
type these characters, as well as their codes.

Key Character w/
Alt

Character w/
Alt+Shift

UNICODE UNICODE w/
Shift

1 ⚀  U+2680 U+E000**
2 ⚁  U+2681 U+E001**
3 ⚂  U+2682 U+E002**
4 ⚃  U+2683 U+E003**
5 ⚄ U+2684
6 ⚅ U+2685
A ├  U+251C U+E004**
B ▕ U+2595
C ┘ ╯ U+2518 U+256F
D ┤  U+2524 U+E005**
E ┐ ╮ U+2510 U+256E
F ╱ ▞ U+2571 U+259E
G ╲ ▚ U+2572 U+259A
H ◢ ◤ U+25E2 U+25E4
I ▗ ▛ U+2597 U+259B
J ◣ ◥ U+25E3 U+25E5
K ▝ ▙ U+259D U+2599
L ▘ ▟ U+2598 U+259F
M ▔ ♛ U+2594 U+265B
N ▁ ♚ U+2581 U+265A
O ▖ ▜ U+2596 U+259C
P ♣ U+2663
Q ┌ ╭ U+250C U+256D
R ─ U+2500
S ┼ ╳ U+253C U+2573
T ● ◯ U+25CF U+25EF
U ▄ ▀ U+2584 U+2580
V ▏ U+258F
W ┬  U+252C U+E006**
X ┴  U+2534 U+E007**
Y ▌ ▐ U+258C U+2590
Z └ ╰ U+2514 U+2570
; ♠ ♟ U+2660 U+265F
\ │ ♞ U+2502 U+265E
, ♥ ♜ U+2665 U+265C
. ♦ ♝ U+2666 U+265D

Left ← ◀ U+2190 U+25C0
Right → ▶ U+2192 U+25B6

Up ↑ ▲ U+2191 U+25B2
Down ↓ ▼ U+2193 U+25BC

Space* █ ▒ U+2588 U+2592

* To circumvent the global Alt+Space hotkey in Windows, press Ctrl+Alt+Space instead.

** UNICODE character codes starting from U+E000 are reserved for custom characters,
and the glyphs assigned to them are specific to 8ASIC. They won't be visible if you open
your program's source text in an external editor.

45

Included Demos

3D Plot

3D graphs of functions plotted using the floating horizon algorithm. Shows how
you can redefine functions using DEF FN.

Babble

Says random gibberish sentences using random text-to-speech voices. Demon-
strates text-to-speech.

Boom

Shows how to synthesize simple sound effects, and how to shake the screen lay-
ers using the @NUDGE system array.

Bounce

Draws a colorful triangle between 3 points bouncing around the screen. Shows
per-vertex fill colors and the resulting gradients.

Bubbles

Draws rising bubbles. Shows the CIRCLE function, and transparency.

Color Quiz

Tests your knowledge of obscure color names. Demonstrates the use of the pal-
ette of named colors, and basic keyboard input.

Dice

Shows how to create simple graphics (frames) using special characters.

Eliza

A talking version of the classic program Eliza.

46

Game of Life

Conway's game of life, using special characters to represent the various cell
states.

Hello World

The classic.

Interference

Demonstrates how to use VECTOR mode to draw graphics that are larger than
the screen.

Koch

Draws the Koch snowflake using turtle graphics.

Lines

Draws a bunch of random lines on the screen. Shows random pen colors per ver-
tex, and the resulting color gradients.

Mandelbrot

Draws the Mandelbrot set by using the background color of text characters as
large pixels.

Matrix

Simulates the notorious “raining code” effect from the Matrix movie.

Maze

A classic minimalist BASIC program. Shows some special character usage.

Monster

A small sprite demo, using one of my daughter's drawings as a sprite. Apart from
sprites, it also shows how to create simple sound effects.

47

Palette

Utility program to show all built-in colors, either sorted by name or by hue.
Demonstrates slightly more advanced keyboard input, and the palette of named
colors.

Raytracer

An enahnced port of a 2008 Commodore 64 BASIC demo by Marco64. It shows
how to render coarse pixel graphics using the BOX command.

Queens

Calculates all solutions for the “8 Queens” problem, using simulated recursion.
Also shows some special character usage. For real recursion with local variables,
see the Tree demo.

Quilt

A variation of the Maze demo, but with random colors. Shows how bitwise opera-
tions can be used to create color contrast.

Spirals

Draws spirals based on arbitrary input shapes. Shows how background and fore-
ground layers can be used to draw independently moving graphics.

Smooth Maze

Another version of Maze, but with overscan and smooth scrolling, as described
here.

Synth

A graphical front-end for 8ASIC's built-in software synthesizer, demonstrating all
of its functions.

Tree

Draws a tree using a recursive L-system algorithm and turtle graphics. Demon-
strates the use of local variables.

48

Open Source Licenses

8ASIC uses the Qt framework, licensed under the LGPL v3.

It also uses the FreeType library, licensed under the FreeType Project License.

49

http://git.savannah.gnu.org/cgit/freetype/freetype2.git/tree/docs/FTL.TXT
https://www1.qt.io/licensing/

	What is 8ASIC
	Conventions
	Hotkeys
	8ASIC vs. 8-bit BASICs
	Saving and Loading
	Speed and Interrupts
	Variables, Strings and Arrays
	Color
	Vector Graphics
	Scrolling
	Sprites
	Sound
	Speech
	Keyboard and Mouse
	BASIC Keywords
	AFTER aexpr[,aexpr] GOSUB aexpr AFTER aexpr[,aexpr] GO SUB aexpr
	AT aexpr,aexpr LOCATE aexpr,aexpr POSITION aexpr,aexpr
	BACKGROUND
	BACKWARD
	BOX aexpr,aexpr,aexpr,aexpr[,expr[,expr]]
	BRUSH expr
	BRUSHDOWN
	BRUSHUP
	BYE
	CIRCLE aexpr,aexpr,aexpr[,aexpr[,expr[,expr]]]
	CLR CLEAR
	CLS [aexpr]
	CONT RESUME
	CURSOR bexpr
	DATA item[,item2,...]
	DEF [FN] name(variable[,variable,...])[=]expr
	DEG
	DEMO [sexpr]
	DIM array(aexpr[,aexpr,...])[,...]
	DRAW [TO] aexpr,aexpr[,expr,[expr]] DRAWR aexpr,aexpr[,expr[,expr]] DRAWTO aexpr,aexpr[,expr[,expr]]
	END
	ENTER sexpr
	EVERY aexpr[,aexpr] GOSUB aexpr EVERY aexpr[,aexpr] GO SUB aexpr
	FAST
	[FN] name(expr[,expr,...])
	FOR counter=aexpr TO aexpr [STEP aexpr]
	FOREGROUND
	FORWARD
	GET variable
	GLOBALS
	GOSUB aexpr GO SUB aexpr
	GOTO aexpr GO TO aexpr
	GRAPHICS aexpr[,aexpr]
	HEADING aexpr
	HELP
	IF bexpr THEN ...
	INKEY
	INKEY$
	INPUT [expr;]variable[,variable,...]
	INTERRUPTS bexpr
	# variable LABEL variable
	LEFT aexpr
	[LET] variable=aexpr [LET] variable$=sexpr
	LIST [aexpr[,aexpr]]
	LOAD [sexpr]
	LOCAL variable[,variable,...]
	LOCALS
	MOVE aexpr,aexpr[,expr[,expr]] MOVER aexpr,aexpr[,expr[,expr]]
	NEXT [counter]
	NEW
	OLD
	ON aexpr GOTO aexpr[,aexpr,...] ON aexpr GOSUB aexpr[,aexpr,...] ON aexpr GO TO aexpr[,aexpr,...] ON aexpr GO SUB aexpr[,aexpr,...]
	PAPER aexpr
	PEN expr
	PENDOWN
	PENUP
	PI
	PAUSE aexpr
	POP
	PLOT aexpr,aexpr[,expr[,expr]] PLOTR aexpr,aexpr[,expr[,expr]]
	? expr[;expr][,expr][...] PR expr[;expr][,expr][...] PRINT expr[;expr][,expr][...]
	PUT aexpr
	RAD
	RANDOMIZE [aexpr]
	RASTER
	READ variable[,variable...]
	RECORD [sexpr]
	REFRESH [bexpr]
	. text REM text
	RENAME variable,new
	RENUMBER [aexpr[,aexpr[,aexpr[,aexpr]]]]
	RESTORE [aexpr]
	RETURN
	RIGHT aexpr
	RUN [aexpr]
	SAVE [sexpr]
	SAY expr[;expr][,expr][...]
	SCROLL [aexpr[,aexpr]]
	SLOW [aexpr]
	SOUND [aexpr[,expr[,aexpr]]]
	SPRITEBLEND aexpr,aexpr[,aexpr[,aexpr]]
	SPRITEDEF aexpr,aexpr[,aexpr[,bexpr]]
	SPRITEMAP aexpr,sexpr[,aexpr[,aexpr]]
	SPRITEPOS aexpr,aexpr,aexpr[,aexpr[,aexpr[,aexpr]]]
	STOP
	TAB aexpr[,aexpr]
	TEXT aexpr,aexpr,expr[;expr][,expr][...]
	TIME
	TRACER bexpr TURTLE bexpr
	TRAP aexpr
	VECTOR
	VERTEX aexpr,aexpr[,expr[,expr]] VERTEXR aexpr,aexpr[,expr[,expr]]
	VOICE expr

	Built-in Functions
	ABS(aexpr)
	ALPHA(aexpr)
	ASC(sexpr) CODE(sexpr)
	ATN(aexpr)
	ATN2(aexpr,aexpr)
	BLEND(aexpr,aexpr,aexpr)
	BLUE(aexpr)
	CHR$(aexpr)
	CLAMP(aexpr,aexpr,aexpr)
	CLOG(aexpr)
	COLOR(expr)
	COLOR$(aexpr)
	COS(aexpr)
	DEC(sexpr)
	EXP(aexpr)
	FRAC(aexpr)
	GREEN(aexpr)
	HEX$(aexpr)
	INT(aexpr)
	INSTR(sexpr,sexpr[,aexpr]) UINSTR(sexpr,sexpr[,aexpr])
	LCASE$(sexpr)
	LEFT$(sexpr,aexpr)
	LEN(sexpr) LEN(array[,aexpr])
	LOG(aexpr)
	MAX(aexpr,aexpr)
	MID$(sexpr,aexpr,aexpr)
	MIN(aexpr,aexpr)
	MIX(aexpr,aexpr,aexpr)
	RIGHT$(sexpr,aexpr)
	RND(aexpr)
	RAND(aexpr)
	RED(aexpr)
	RGB(aexpr,aexpr,aexpr)
	RGBA(aexpr,aexpr,aexpr,aexpr)
	ROUND(aexpr)
	SGN(aexpr)
	SIN(aexpr)
	SQR(aexpr)
	STR$(aexpr[,aexpr])
	TAB(aexpr,[aeprx])
	TAN(aexpr)
	TRUNC(aexpr)
	UCASE$(sexpr)
	VAL(sexpr)

	Operators
	System Variables
	@ATTACK
	@BLENDMODE
	@BRUSH
	@BRUSHDOWN
	@BUTTON
	@CHAR
	@CLICK
	@CLIP
	@COLORS
	@COLUMNS @LINES
	@CURSOR
	@CURSORX @CURSORY
	@DATE$
	@DBLCLICK
	@DECAY
	@ERROR$
	@ERRORLINE
	@FILTER
	@FRAME
	@GRAPHX @GRAPHY
	@HEADING
	@INTERRUPTS
	@KEY
	@KEYVOLUME
	@LAYER
	@LFO
	@LOWPASS
	@MAP
	@MARGINL @MARGINR
	@MOUSEX @MOUSEY
	@NOISE
	@NUDGE
	@OPACITY
	@OVERSCAN
	@PAN
	@PAPER
	@PEN
	@PENDOWN
	@PITCH
	@PLOTX @PLOTY
	@PORTAMENTO
	@POSX @POSY
	@PULSE
	@RELEASE
	@ROTATION
	@SCALE @SCALEX @SCALEY
	@SINE
	@SIZEX @SIZEY
	@SLOPE
	@SUSTAIN
	@TEXTLAYER
	@TIME$
	@TREMOLO
	@TURTLE
	@VIBRATO
	@VOICE
	@VOICES
	@VOICENAME$
	@VOICELOCALE$
	@VOLUME
	@WHEEL
	@WINDOWX @WINDOWY

	Special Characters
	Included Demos
	3D Plot
	Babble
	Boom
	Bounce
	Bubbles
	Color Quiz
	Dice
	Eliza
	Game of Life
	Hello World
	Interference
	Koch
	Lines
	Mandelbrot
	Matrix
	Maze
	Monster
	Palette
	Raytracer
	Queens
	Quilt
	Spirals
	Smooth Maze
	Synth
	Tree

	Open Source Licenses

